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We present a semianalytical treatment of both the elastic and inelastic collisional properties near ap-wave
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dominate over the low-energy behavior.
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I. INTRODUCTION

The observation of molecular gaseous Bose-Einstein con-
densatessBECSd and the subsequent experimental study of
the BEC-BCS crossoverf1–5g were made possible by the
possibility of tuning interatomic interactions using a mag-
netic fieldsthe so-called Feshbach resonancesd. Although all
these experiments were based ons-wave interatomic interac-
tions, it is known from condensed matter physics that super-
fluidity of fermionic systems can also arise through higher-
order partial waves. The most famous examples of this
nonconventionnal superfluidity are3He f6g, for which the
Cooper pairs spawn fromp-wave interactions, and high-Tc
superconductivity, in which pairs are known to possess
d-wave symmetryf7g. Recent interest inp-wave interactions
in cold atom gases stemmed from these possibilities and re-
sulted in the observation ofp-wave Feshbach resonances in
40K f8g and 6Li f9,10g, as well as theoretical studies on the
superfluidity of cold atoms interacting throughp-wave pair-
ing f11,12g.

The present paper is devoted to the study ofp-wave in-
teractions close to a Feshbach resonance and it derives some
results presented inf9g. In a first part, we present the model
we use to describe both elastic and inelastic processes that
are discussed in the second part. We stress in particular the
main qualitative differences betweenp-wave ands-wave
physics and show that contrarily to the case of thes wave,
which is dominated by low-energy physics,p-wave scatter-
ing is dominated by a resonance peak associated to the qua-
sibound molecular state. Finally, we compare our analytical
results to numerical coupled-channel calculations.

II. MODEL FOR p-WAVE INTERACTIONS

We consider the scattering of two identical particles of
massm. As usual when treating a two-body problem, we
work in the center-of-mass frame and consider only the mo-
tion of a fictitious particle of massm/2 interacting with a
static potential. In order to study thep-wave Feshbach reso-
nance, we use a model based on the separation of open and

closed channels. In this framework, the Feshbach resonance
arises in an open channel as a result of the coupling with a
closed channelf13g. At resonance, scattering properties are
dominated by resonant effects and we can neglect all “back-
ground” scatteringsi.e., we assume there is no scattering far
from resonanced.

s1d We restrict ourselves to a three-channel system, la-
beled 1, 2, and 3, which correspond to the different two-body
spin configurationssFig. 1d. Channels!1l and !2l are open
channels. We focus on the situation where atoms are pre-
pared initially in state!1l. Atoms may be transferred to state
!2l after an inelastic process. Channel!3l is closed and hosts
the bound state leading to the Feshbach resonance.

Let us consider, for instance, the case of6Li atoms pre-
pared in a mixture ofuF=1/2,mF=1/2l and uF8=1/2,mF8
=−1/2l. In this system, the only two-body decay channel is
associated with the flipping of anmF8 =−1/2 atom tomF8
=1/2. If wedenote bysmF ,mF8d the symmetrized linear com-
bination of the statesuF=1/2,mFl and uF8=1/2,mF8l, then
u1l=s1/2,−1/2d and u2l=s1/2,1/2d.

FIG. 1. Thep-wave model: we consider three internal states,
labeled!1l, !2l, and !3l. States!1l and !2l are two open channels
corresponding, respectively, to the incoming and decay channels.
The released energy in an inelastic collision bringing an atom ini-
tially in !1l to !2l is denotedD. State!3l is a closed channel that
possesses ap-wave bound state of energyd nearly resonant with
state !1l. Finally, we assume that these three channels interact

through a potentialV̂ acting only on the internal states and coupling
the two open channels to the closed channel.

PHYSICAL REVIEW A 71, 062710s2005d

1050-2947/2005/71s6d/062710s8d/$23.00 ©2005 The American Physical Society062710-1



s2d The Feshbach resonances studied here are all located
at values of the magnetic field where the Zeeman splitting is
much larger than the hyperfine structure. In a first approxi-
mation we can therefore assume that the internal states are
described by uncoupled electronic and nuclear spin states. In
the absence of any dipolar or hyperfine coupling between the
electronic singlet and triplet manifolds, we assume we have
no direct interaction in channels 1 and 2 so that the eigen-
states are plane waves characterized by their relative wave
vector k and their energyE1skd="2k2/m schannel 1d and
E2skd=−D+"2k2/m schannel 2d. D.0 is the energy released
in an inelastic process leading from 1 to 2.D can be consid-
ered as independent of the magnetic field and is assumed to
be much larger than any other energy scalessin the case
relevant to our experiments,D /h,80 MHz is the hyperfine
splitting of 6Li at high fieldd.

s3d In channel 3, we consider only ap-wave bound state
nesting at an energyd quasiresonant with channel 1. In the
case of6Li atoms in theF=1/2 hyperfine state,d=2mBsB
−B0d, whereB is the magnetic field andB0 is the position of
the “bare” Feshbach resonance. If the projection of the an-
gular momentumsin units of"d is denoted bymu for a quan-
tization axis chosen along some vectoru, the eigenfunctions
associated with this bound state can be written as
gsrdY1

musu ,fd, wheresr ,u ,fd is the set of polar coordinates
and theYl

m are the spherical harmonics.

s4d The couplingV̂ between the various channels affects
only the spin degrees of freedom. Therefore the orbital an-
gular momentum is conserved during the scattering process
and we restrict our analysis to thep-wave manifold. This is
in contrast to the situation in heavy alkalimetals where in-
coming particles in thes wave can be coupled to molecular
states of higher orbital angular momentumf14,15g.

We assume also that the only nonvanishing matrix ele-
ments are between the closed and the open channelssi.e.,

k1,2uV̂u u3l and k3uV̂u1,2ld.
Let us denote a state of the system byua ,xl, wherea

P h1,2,3j and x describe, respectively, the internalsspind
and the orbital degrees of freedom. According to assumption

ss4dd, the matrix elementka ,xuV̂ua8 ,x8l is simply given by

ka,xuV̂ua8,x8l = kxux8lkauV̂ua8l, s1d

and is therefore simply proportional to the overlapkx ux8l
between the external states.

Let us now particularize to the case whereaP h1,2j, and
uxl= ukl is associated with a plane wave of relative momen-
tum "k. According to hypothesisss4dd, this state is coupled
only to the closed channel!3l . Moreover, using the well-
known formulaeikz=oli

lÎ4ps2l +1d j lskrdYl
0su ,fd, where the

j l are the spherical Bessel functions, we see thatuxl is
coupled only to the stateua8=3,k =0l describing the pair in
the bound stateua8=3l with zero angular momentum in thek
direction. The matrix element then reads

ka,k uV̂u3,mkl = idmk,0Î12p

L3 kauV̂u3l E g*srd j1skrdr2dr,

s2d

whereL3 is a quantization volume. Since for smallk we have

j1skrd,kr /3, the matrix elementka ,k uV̂u3,mkl takes the
general form

ka,k uV̂u3,mkl = dmk,0
kFaskd
ÎL3

, s3d

whereFaskd has a finitesin general nonzerod limit when k
goes to zero.

Later on, we shall also need the coupling betweenua ,kl
and u3,mk8=0l sthat will be denoted byu3,0k8ld, where the
momentumk and the direction of quantizationk8 are no
longer parallel. The calculation presented above yields
readily

ka,k uV̂u3,0k8l =
kFaskd
ÎL3

k0ku0k8l =
kFaskd
ÎL3

cossk,k8
ˆ d, s4d

wheresk ,k8
ˆ d is the angle betweenk andk8 f16g.

III. T MATRIX

From general quantum theory, it is known that the scat-
tering properties of a system are given by the so-calledT

matrix T̂. It can be shown in particular thatT̂ is given by the
following expansion in powers of the coupling potential:

T̂sEd = V̂ + V̂Ĝ0sEdV̂ + V̂Ĝ0sEdV̂Ĝ0sEdV̂ + ¯ , s5d

where Ĝ0sEd=1/sE−Ĥ0d and Ĥ0=Ĥ−V̂ is the free Hamil-
tonian of the system.

Let us considerua ,kl and ua8 ,k8l, two states of theopen

channels, and let us setTaa8sk ,k8 ,Ed=ka ,k uT̂sEdua8 ,k8l.
According to formulas5d, this matrix element is the sum of
terms that can be represented by the diagram of Fig. 2 and
we get after a straightforward calculation

Taa8sk,k8,Ed =
kk8

L3 FaskdFa8
* sk8do

n=0

`

RnLsEdnG0
smdsEdn+1.

Here G0
smdsEd=1/sE−dd is the free propagator for the

molecule,L=L1+L2 with

FIG. 2. Diagrammatic expansion of theT matrix. The full
sdashedd lines represent free atomssmoleculesd. ua ,kl is the scat-
tering state of the two particles, in the internal statea=1,2. u3,0kl
represents the state of ap-wave molecule with orbital angular mo-
mentum component zero on thek direction.

CHEVY et al. PHYSICAL REVIEW A 71, 062710s2005d

062710-2



LasEd =E q4dq

s2pd3

uFasqdu2

E − Easqd
s6d

the results of the integration on the loops, and finally

Rn =E d2V1 ¯ d2Vncossk,k 1̂d

3cossk1,k 2̂d ¯ coskn,k8
ˆ

,

whereVp is the solid angle associated withkp, arises from
the pair-breaking verticesu3,0k i

l→ uai+1,k i+1l. This last in-
tegral can be calculated recursively and we getRn

=s4p /3dncossk ,k8
ˆ d, that is, for theT matrix

Taa8sk,k8,Ed =
1

L3

kk8FaskdFa8
* sk8d

E − d − S1 − S2
cossk,k8
ˆ d,

with Sa=4pLa /3.
This expression can be further simplified since, according

to Eq. s2d, the width ofFasqd is of the order of 1/Re, where
Re is the characteristic size of the resonant bound state. In the
low-temperature limit, we can therefore expandSa with the
small parameterkRe.

From Eq.s2d, we see that replacingFasqd by its value at
q=0 leads to aq2 divergence. This divergence can be regu-
larized by the use of counterterms in the integral, namely, by
writing that

SasEd =E uFasqdu2F q4

E − Easqd
+

mq2

"2 +
m2

"4 fE − Eas0dgG dq

6p2

−E uFasqdu2
mq2

"2

dq

6p2

− fE − Eas0dg E uFasqdu2
m2

"4

dq

6p2 ,

where we have assumed thatFa was decreasing fast enough
at largeq to ensure the convergence of the integrals.uFasqdu2
can now be safely replaced byla= uFas0du2 in the first inte-
gral and we finally get

Sa = − i
la

6p

m

"2S m

"2fE − Eas0dgD3/2

− d0,a − hafE − Eas0dg,

with

d0
sad =E uFasqdu2

mq2

"2

dq

6p2 ,

ha =E uFasqdu2
m2

"4

dq

6p2 .

If we assume that the release energyD is much larger than
E and if we setd0=d0

s1d+d0
s2d andh=h1+h2, we get for theT

matrix

Taa8sk,k8,Ed .
1

L3

kk8Fas0dFa8
* s0dcossk,k8

ˆ d/s1 + hd

E − d̃ + i"gsEd/2
s7d

with

"gsEd = S m

"2D5/2sl2D3/2 + l1E
3/2d

3ps1 + hd
,

d̃ =
sd − d0d
1 + h

.

We note that this expression for theT matrix is consistent
with the general theory of multichannel scattering resonances
f13g, where resonantly enhanced transitions to other channels
are readily included. In a similar context of two open chan-
nels and a Feshbach resonance, a recent experiment was ana-
lyzed f15g that involved the decay of a molecular state
formed from a Bose-Einstein condensate.

IV. s WAVE VS p WAVE

This section is devoted to the discussion of the expression
found for theT matrix. In addition to the scattering cross
section, the study of theT matrix yields important informa-
tion on the structure of the dressed molecular state underly-
ing the Feshbach resonance and we will demonstrate impor-
tant qualitative differences between the behaviors ofp-wave
ands-wave resonances.

A. Molecular state

The binding energyEb of the molecule is given by the
pole of T. In the limit d,d0, it is therefore given by

Eb = d̃ − i"gsd̃d/2,

We see that the real part ofEb sthe “physical” binding

energyd is ,d̃ and therefore scales linearly with the detuning
d−d0. This scaling is very different from what happens for
s-wave processes where we expect asd−d0d2 behavior. This
difference is in practice very important: indeed, the mol-
ecules can be trapped after their formation only if their bind-
ing energy is smaller than the trap depth. The scaling we get
for the p-wave molecules means that the binding energy in-
creases much faster when we increase the detuning than what
we obtain fors-wave moleculessthis feature was already
pointed out in f11gd. Hence, p-wave molecules must be
looked for only in the close vicinity of the Feshbach
resonance—for instance, forh!1 srelevant for6Li, as we
show belowd and a trap depth of 100mK, the maximum
detuning at which molecules can be trapped is.0.1 G.

This asymptotic behavior of the binding energy is closely
related to the internal structure of the molecule. Indeed, the
molecular wave functionucmsBdl can be written as a sum
uopenl+ uclosedl of its projections on the closed and open
channels, which correspond, respectively, to short- and long-
range molecular states. If we neglect decay processes by set-
ting l2=0, we can define the magnetic moment of the mol-
eculesrelative to that of the free atom paird by
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DmeffsBd = −
]Eb

]B
= −

] d̃

]B
,

that is, in the case of6Li where d=2mBsB−B0d,

DmeffsBd = −
2mB

1 + h
. s8d

On the other hand, we can also writeEb

=kcmsBduĤsBducmsBdl. Since in the absence of any decay
channel, the molecular state is the ground state of the two-
body system, we can write using the Hellmann-Feynman re-
lation

Dmeff = −
]Eb

]B
= − kcmsBdu

]ĤsBd
]B

ucmsBdl.

In our model, the only term of the Hamiltonian depending
on the magnetic field is the energyd=2mBsB−B0d of the bare
molecular state in the closed channel and we finally have

Dmeff = − 2mBkcloseduclosedl. s9d

If we compare Eqs.s8d ands9d, we see that the probability
Pclosed=kcloseduclosedl to be in the closed channel is given
by

Pclosed= 1/s1 + hd.

In other words, unlessh=`, there is always a finite frac-
tion of the wave function in the tightly bound state. In prac-
tice, we will see that in the case of6Li, h!1. This means
that the molecular states that are nucleated close to a Fesh-
bach resonance are essentially short-range molecules. On the
contrary, fors-wave molecules,Eb~ sd−d0d2 leads toDmeff

=−2mBkcloseduclosedl~ sd−d0d. This scaling leads to a zero
probability of occupying the bare molecular state near an
s-wave resonance.

We can illustrate these different behaviors in the simpli-
fied picture of Fig. 3. For small detunings around threshold,
the p-wave potential barrier provides a large forbidden re-
gion, which confines the bound state behind this barrier. The
bound-state wave function decays exponentially inside the
barrier and the tunneling remains nearly negligible. Since
there is no significant difference for the shape of thep-wave
bound state for small positive and negative detunings, the
linear dependence of the closed channel on magnetic field
will be conserved for the bound state, and therefore the bind-
ing energy will also linearly approach the threshold. We note
that the linear dependence close to threshold can also be
found from the general Breit-Wigner expression for a reso-
nance, in combination with thep-wave threshold behavior of
the phase shiftf13g.

The imaginary part ofEb corresponds to the lifetime of
the molecule. In the case ofs-wave molecules for which
two-body decay is forbiddenf20,21g, the only source of in-
stability is the coupling with the continuum of the incoming

channel that leads to a spontaneous decay whend̃.0 fsee
Fig. 3sadg. By contrast, we get a finite lifetime in thep wave

even atd̃,0: due to dipolar relaxation between its constitu-
ents, the molecule can indeed spontaneously decay toward

state u2l. For d̃,0, the decay rateg0 associated with this
process is given by

g0 = gs0d =
l2

1 + h

m

3pq3SmD

"2 D3/2

.

B. Elastic scattering

The scattering amplitudefsk ,k8d for atoms colliding in
the channel 1 can be extracted from theT matrix using the
relation

fsk,k8d = −
mL3

4p"2T11sk,k8,E = "2k2/md,

that is,

fsk,k8d = −
ml1

4p"21k2cossk,k8
ˆ d/s1 + hd

"2k2/m− d̃ − i"g/2
2 .

The cossk ,k8
ˆ d dependence is characteristic ofp-wave

processes and, once again, this expression shows dramatic
differences from thes-wave behavior. First, at lowk, fsk ,k8d
vanishes likek2. If we introduce the so-called scattering vol-
umeVs f13g defined by

FIG. 3. Effect of the centrifugal barrier on the bound state in
p-wave Feshbach resonances.sad Case ofs-wave scattering: the
bare molecular state goes fromd,0 sfull lined to d.0 sdashed
lined. In the process, the molecular state becomes unstable and the
wave function becomes unbounded.sbd In the case of ap-wave
bound state, the presence of the centrifugal barrier smooths the
transition fromd.0 to d,0. Even ford.0, the wave function
stays located close to the bottom of the well.
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fsk,k8d = − Vsk
2,

then we have

Vs =
− ml1

4p"2fd − d0 + is1 + hd"g0/2g
,

− ml1

2p"2sd − d0d
,

if we neglect the spontaneous decay of the molecule. We see
that in this approximation, the binding energyEb of the mol-
ecule is given by

Eb = −
ml1

2p"2s1 + hd
1

Vs
.

In s-wave processes, the binding energy and the scattering
length are related through the universal formulaEb
=−"2/ma2. This relationship is of great importance since it
allows one to describe both scattering properties and the mo-
lecular state with only one scattering length, without having
to be concerned care with any other detail of the interatomic
potential. In the case of thep wave, we see that no such
universal relation exists between the scattering volume and
Eb, a consequence of the fact that we have to deal with
short-range molecular states, even at resonance. We therefore
need two independent parameters to describe both the bound
states and the scattering properties.

In the general case, the elastic cross sectionsel is propor-
tional to uf u2. According to our calculation, we can putsel
under the general form

selsEd =
CE2

sE − d̃d2 + "2g2/4
, s10d

whereE="2k2/m is the kinetic energy of the relative motion
andC is a constant depending on the microscopic details of
the system. Noticeably, the energy dependence of the cross

section exhibits a resonant behavior atE= d̃ as well as a
plateau whenE→`, two features that were observed in the
numerical coupled-channel calculations presented inf17g.
Once again, this leads to physical processes very different
from what is expected ins-wave scattering. Indeed, we know
that in s-wave scattering, we havef ,−a, as long aska!1.
Sincea is in general nonzero, the low-energy behavior gives
a non-negligible contribution to the scattering processes. By
contrast, we have just seen that in the case of thep wave, the
low-energy contribution is vanishingly smallssel,E2d so
that the scattering will be dominated by the resonant peak

E, d̃.

C. Inelastic scattering.

For two particules colliding in channel 1 with an energy
E="2k2/m, the probability to decay to channel 2 is propor-
tional to r2sk8duT12sk ,k8 ,Edu2 where r2 is the density of
states in channel 2. Sincek8 is given by the energy conser-
vation condition"2k82/m−D=E, and in practiceD@E, we
see thatk8,ÎmD /"2 is therefore a constant. Using this ap-
proximation, we can write the two-body loss rateg2sEd for
particles of energyE as

g2sEd =
DE

sE − d̃d2 + q2g2/4
,

whereD is a constant encapsulating the microscopic details
of the potential.

V. COMPARISON WITH COUPLED-CHANNEL
CALCULATION

The quantities such asC,D ,g0, etc., that were introduced
in the previous section were only phenomenological param-
eters to which we need to attribute some value to be able to
perform any comparison with the experiment. These data are
provided by ab initio numerical calculations using the
coupled-channel scheme described inf18g. The result of this
calculation for the elastic scattering cross section is presented
in Fig. 4. The most striking feature of this figure is that it
displays two peaks instead of one, as predicted by Eq.s10d.
This difference can be easily understood by noting that the
dipolar interaction that couples the molecular state to the
outgoing channel provides a “spin-orbit” coupling that modi-
fies the relative orbital angular momentum of the pairf17g.
In other words, each resonance corresponds to a different
value of the relative angular momentumml sthe ml = +1 and
ml =−1 resonances are superimposed because the frequency
shift induced by the dipolar coupling is proportional toml

2, as
noted inf17gd.

As the spin-orbit coupling is not included in our simpli-
fied three-level model, we take the multiple peak-structure
into account by fitting the data of Fig. 4 using a sum of three
laws s10d with a different set of phenomenological param-
eters for each value of the angular momentum:

selsEd = o
ml=−1

+1 Cml
E2

sE − d̃ml
d2 + "2gml

2 /4
, s11d

where d̃ml
is related to the magnetic field throughd̃ml

=msB
−BF,ml

d and gml
=g0,ml

+aml
E3/2. Using this law, we obtain a

perfect fit to the elastic as well as inelastic data obtained
from the coupled-channel calculations. The values obtained

FIG. 4. Energy dependence of the elastic cross section. Dots:
numerical closed-channel calculation. The left peak corresponds to
ml =0 and the right peak toml = ±1. Full line: Fits using Eq.s11d.
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for the different phenomenological parameters are presented
on Table I.

From these data, we see first that the “elastic” properties
are independent ofml. This comes from the fact that the
elastic scattering is mainly a consequence of the hyperfine
coupling that does not act on the center-of-mass motion of
the atoms. However, we see that both the inelastic collision
rate constantD and the molecule lifetimeg0 exhibit large
variations with the relative angular momentumf22g. First,
the spontaneous decay rateg0 of a molecule inml =0, +1 is
always larger than,102 s−1, which corresponds to a maxi-
mum lifetime of about 10 ms. Second, we observe a strong
reduction of the losses in theml =−1 channel, in which no
significant spontaneous decay could be found. An estimate of
g0 can nevertheless be obtained by noting that, since the
elastic parameters are independent ofml, the ratio D /g0

should not depend onml fthis can be checked by comparing
the ratiosD /g0 for ml =0 andml = +1 in the s−1/2,−1/2d
channelg. Using this assumption we find thatg0,4
310−3 s−1 both ins1/2,−1/2d ands−1/2,−1/2d. The reason
for this strong increase of the lifetime of the molecules in
ml =−1 is probably because, due to angular momentum con-
servation, the outgoing pair is expected to occupy a state
with l =3 after an inelastic process. Indeed, if we start in a
two-body statesmF ,mF8d and if the dipolar relaxation flips the
spin mF8, then the atom pair ends up in a statesmF ,mF8 +1d.
This increase of the total spin of the pair must be compen-
sated by a decrease of the relative angular momentum.
Therefore, if the molecule was associated with a relative an-
gular momentumml, it should end up withml −1. In the case
of ml =−1, this means that the final value of the relative
angular momentum isml =−2, i.e., l ù2. But, according to
selection rules associated with spin-spin coupling, the dipo-
lar interaction can only changel by 0 or 2. Therefore, start-
ing from a p-wave sl =1d compound, this can only lead tol
=3. Let us now assume that the coupling between the mo-
lecular state and the outgoing channel is still proportional to
the overlap between the two statesfsee Eq.s1dg, even in the
presence of a dipolar coupling: the argument above indicates
that the ratior=g0,ml =−1/g0,ml8Þ−1 between the decay rate of
molecules inml =−1 and the one of molecules inml8Þ1 is
then of the order of

r , *E g*srd j3skrdr2dr

E g*srd j1skrdr2dr*
2

,

where k=ÎmD /"2 is the relative momentum of the atoms
after the decay. For lithium, we haveRe,3 Å f23g which
yields kRe,7310−2. This permits us to approximate the
spherical Bessel functionsj l by their expansion at low
k, j lskrd,skrdl, that is,

r , k4*E g*srdr5dr

E g*srdr3dr*
2

, skRed4.

With the numerical value obtained forkRe, we getr,2
310−5, which is, qualitatively, in agreement with the nu-
merical coupled-channel calculations presented above.

VI. TEMPERATURE AVERAGING

In realistic conditions, the two-body loss rateG2 needs to
be averaged over the thermal distribution of atoms.G2 is
therefore simply given by

G2sEd =Î p

4skBTd3E
0

`

g2sEde−E/kBTE1/2dE.

The evolution ofG2 vs detuning is displayed in Fig. 5 and
shows a strongly asymmetric profile that was already noticed
in previous theoretical and experimental papersf8,10g.

This feature can readily be explained by noting that in
situations relevant to experiments,g0 is small with respect to
temperature. We can therefore replaceg2 by a sum of Dirac
functions centered ond0,ml

. When thed0,ml
are positive,G2

takes the simplified form

G2 = 4Îpo
ml
S Dml

"gml
sd̃ml

d
DS d̃ml

kBT
D3/2

e−d̃ml
/kBT.

Moreover, if we neglect the lift of degeneracy due to the

dipolar interaction coupling and we assume all thed̃ml
to be

equal to somed̃, we get

TABLE I. Values of the phenomenological parameters obtained after a fit to the coupled-channel calcu-
lation data of Fig. 4.dBF is the shift between theml = ±1 andml =0 resonances.

Channel s1/2,−1/2d s−1/2,−1/2d
ml −1 0 1 −1 0 1

Cs10−13 cm2d 0.22 0.22 0.22 0.87 0.88 0.87

Ds10−13 cm2 mK/sd 0.00002 0.59 0.56 3310−5 1.54 5.72

g0ss−1d ,10−2 110 110 ,1 220 830

asmK−1/2d 0.0017 0.0017 0.0017 0.0024 0.0024 0.0024

h 0.22 0.22 0.22 0.23 0.23 0.23

dBFsGd −0.0036 0 −0.0036 −0.012 0 −0.012
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G2 = 4ÎpS D̄

"ḡsd̃d
DS d̃

kBT
D3/2

e−d̃/kBT, s12d

with D̄=oml
Dml

and D̄ / ḡ=oml
Dml

/gml
f19g.

For d̃,0 and ud̃u@kBT, we can replace the denominator

of g2 by d̃ 2 and we get the asymptotic form forG2

G2 =
3

2
kBTo

ml

Dml

d̃ ml

2
. s13d

Let us now comment on the two equationss12d ands13d .
s1d We note that the maximum value ofG2 is obtained for

d̃ /kBT=3/2. It means that when tuning the magnetic field

si.e., d̃d, the maximum losses are not obtained at the reso-

nance d̃=0, but at a higher field, corresponding tod̃
=3kBT/2. For a typical experimental temperatureT=10 mK,
this corresponds to a shift of about 0.1 G.

s2d Similarly, the width of G2sd̃d scales likekBT. Ex-
pressed in terms of magnetic field, this corresponds to
,0.1 G for T=10 mK. This width is a consequence of the
resonance nature of the scattering inp-wave processes. As
seen earlier, both elastic and inelastic collisions are more

favorable when the relative energyE= d̃. When d̃,0, the
resonance conditions cannot be satisfied, since there are no
states in the incoming channel with negative energy. The

scattering is then formally analogous to optical pumping or

other second-order processes and yields the 1/d̃ 2 obtained in

Eq. s13d. When d̃@kBT, the resonance condition is satisfied
by states that are not populatedssince for a thermal distribu-
tion, we populate states up toE,kBTd.

VII. CONCLUSION

In this paper, we have developed a simple model captur-
ing the main scattering properties close to ap-wave Fesh-
bach resonance. The analytical formulas we obtained show
very good agreement with both numerical coupled-channel
calculations and experimental measurements from our group
f9g and from Chin and Grimmf24g. We have shown that the
line shape of the resonance is very different from what is
expected for ans-wave process: whiles-wave scattering is
mainly dominated by low-energy processes,p-wave scatter-
ing is rather dominated by collisions at energies equal to that
of the molecular state. Regardingp-wave molecules, we
have seen that at resonance their wave function was domi-
nated by the short-range bare molecular state. Finally, the
study of the spontaneous decay of these molecules has
shown a very different lifetime depending on the relative
angular momentum of its constituents, since molecules in
ml =−1 could live 104 times longer than those inml =0, +1.
This very intriguing result might prove to be a valuable asset
for the experimental study ofp-wave molecules since it guar-
antees thatml =−1 dimers are very stable against two-body
losses in the absence of depolarizing collisions.

ACKNOWLEDGMENTS

We thank Z. Hadzibabic, J. Dalibard, and Y. Castin for
very helpful discussions. S.K. acknowledges support from
the Netherlands Organisation for Scientific ResearchsNWOd
and E.U. Contract No. HPMF-CT-2002-02019. E.K. ac-
knowledges support from the Stichting FOM, which is finan-
cially supported by NWO. M.T. acknowledges support from
E.U. Contracts No. HPMT-2000-00102 and No. MEST-CT-
2004-503847. This work was supported by CNRS, by the
ACI photonique and nanosciences programs from the French
Ministry of Research, and by Collège de France. Laboratoire
Kastler Brossel is “Unité de recherche de l’École Normale
Supèrieure et de l’Université Pierre et Marie Curie, associée
au CNRS.”

f1g S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C.
Chin, J. Hecker Denschlag, and R. Grimm, Science302, 2101
s2003d.

f2g M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach,
S. Gupta, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett.91,
250401s2003d.

f3g T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy,
M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C.
Salomon, Phys. Rev. Lett.93, 050401s2004d.

f4g J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E.

Thomas, Phys. Rev. Lett.92, 150402s2004d.
f5g M. Greiner, C. A. Regal, and D. S. Jin, NaturesLondond 426,

537 s2003d.
f6g D. M. Lee, Rev. Mod. Phys.69, 645 s1997d.
f7g C. C. Tsuei and J. R. Kirtley, Phys. Rev. Lett.85, 182 s2000d.
f8g C. A. Regalet al., Phys. Rev. Lett.90, 053201s2003d.
f9g J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich, J.

Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F.
Kokkelmans, and C. Salomon, Phys. Rev. A70, 030702sRd
s2004d.

FIG. 5. Full line: numerical calculation of the loss rate forT
=10 mK. Dotted line: asymptotic expansions12d.

RESONANT SCATTERING PROPERTIES CLOSE TO A… PHYSICAL REVIEW A 71, 062710s2005d

062710-7



f10g C. H. Schunck, M. W. Zwierlein, C. A. Stan, S. M. F. Raupach,
W. Ketterle, A. Simoni, E. Tiesinga, C. J. Williams, and P. S.
Julienne, e-print cond-mat/0407373.

f11g T. L. Ho and N. Zahariev, e-print cond-mat/0408469; T. L. Ho
and R. B. Diener, e-print cond-mat/0408468.

f12g Y. Ohashi, e-print cond-mat/0410516.
f13g J. R. Taylor,Scattering TheorysJohn Wiley, New York, 1972d;

H. Feshbach,Theoretical Nuclear PhysicssJohn Wiley, New
York, 1992d.

f14g C. Chin, V. Vuletic, A. J. Kerman, and S. Chu, Phys. Rev. Lett.
85, 2717s2000d; P. J. Leo, C. J. Williams, and P. S. Julienne,
ibid. 85, 2721s2000d.

f15g Thomas Volz, Stephan Drr, Niels Syassen, Gerhard Rempe,
Eric van Kempen, and Servaas Kokkelmans, e-print cond-mat/
0410083.

f16g A. R. Edmunds,Angular Momentum in Quantum Mechanics
sPrinceton University Princeton, NJ, Press, 1996d.

f17g C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, Phys. Rev.
A 69, 042712s2004d.

f18g E. G. M. van Kempen, B. Marcelis, and S. J. J. M. F. Kokkel-
mans, e-print cond-mat/0406722.

f19g For the sake of simplicity, these averaged parameters only
were presented inf9g.

f20g K. Dieckmann, C. A. Stan, S. Gupta, Z. Hadzibabic, C. H.
Schunck, and W. Ketterle, Phys. Rev. Lett.89, 203201s2002d.

f21g H. T. C. Stoof, J. M. V. A. Koelman, and B. J. Verhaar, Phys.
Rev. B 38, 4688s1988d.

f22g Note that the different lifetimes calculated for the threeml

states do not violate any rotational symmetry. Indeed, the mag-
netic field used to reach the Feshbach resonance provides a
preferred direction to the system.

f23g We evaluateRe by identifying it with the relative distancer at
which the totalscentrifugal + long-ranged potential 3"2/mr2

−C6/ r6−C8/ r8−C10/ r10 cancels and we used theC8,9,10 coef-
ficients off24g. Z.-C. Yanet al., Phys. Rev. A54, 2824s1996d.

f24g C. Chin and R. Grimmsprivate communicationd.

CHEVY et al. PHYSICAL REVIEW A 71, 062710s2005d

062710-8


